CSE4203: Computer Graphics
 Chapter - 7 (part - A) Viewing

Mohammad Imrul Jubair

Outline

- Image-order and object-render rendering
- Viewing transformation
- Viewport transformation
- Orthographic projection transformation

Credit

CS4620: Introduction to
 Computer Graphics

Cornell University
Instructor: Steve Marschner http://www.cs.cornell.edu/courses/cs46 20/2019fa/

Rendering Techniques (1/2)

- One of the basic tasks of computer graphics is rendering 3D objects:
- taking a scene, or model, composed of many geometric objects arranged in 3D space
- producing a 2D image that shows the objects as viewed
- from a particular viewpoint.

Rendering Techniques (2/2)

1. Image-order rendering: iterate over the pixels in the image to be produced, rather than the elements in the scene to be rendered.
2. object-order rendering: that iterate over the elements in the scene to be rendered, rather than the pixels in the image to be produced.

Image-order Rendering (1/2)

- Image-order rendering:
- Ray-tracing:

Each pixel is considered in turn, and for each pixel

- All the objects that influence it are found
- and the pixel value is computed.
- in Chapter 4

Object-order Rendering (1/2)

- Object-order rendering:
- Viewing Transformation:

Each object is considered in turn, and for each object:

- All the pixels that it influences are found and updated

Object-order Rendering (2/2)

- Viewing Transformation (this chapter):
- The inverse of the previous process.
- How to use matrix transformations to express any parallel or perspective view.
- These transformations:
- Project 3D points in the scene (world space) to 2D points in the image (image space)

Object space vs World space vs Camera space

- Object space
- World space
- Camera space

Viewing Transformation Sequences (1/1)

Viewport Transformation (1/19)

- Projection: Ignoring the z-coordinate

Viewport Transformation (2/19)

- Canonical View Volume: $(x, y, z) \in[-1,1]^{3}$
- We will assume that the model to be drawn are completely inside the canonical view vol.

Viewport Transformation (4/19)

Viewport Transformation (5/19)

Viewport Transformation (7/19)

$(x, y) \in[-1,1]^{2}$

Viewport Transformation (8/19)

Viewport Transformation (9/19)

$T(1,1)$

Viewport Transformation (10/19)

$$
\mathrm{T}(1,1) \rightarrow \mathrm{S}(\mathrm{nx} / 2, n y / 2)
$$

Viewport Transformation (11/19)

Viewport Transformation (12/19)

$$
\begin{gathered}
T(1,1) \rightarrow S(n x / 2, n y / 2) \rightarrow T(-1 / 2,-1 / 2) \\
M_{v p}=T(-1 / 2,-1 / 2) * S(n x / 2, n y / 2) * T(1,1)
\end{gathered}
$$

Viewport Transformation (15/19)

$$
\begin{aligned}
& M_{v p}=T(-1 / 2,-1 / 2) * S(n x / 2, n y / 2) * T(1,1) \\
& {\left[\begin{array}{ccc}
\frac{n_{x}}{2} & 0 & \frac{n_{x}-1}{2} \\
0 & \frac{n_{y}}{2} & \frac{n_{y}-1}{2} \\
0 & 0 & 1
\end{array}\right] \begin{array}{l}
\text { Q: Do matrix } \\
\text { multiplication and check }
\end{array}}
\end{aligned}
$$

Viewport Transformation (16/19)

$$
M_{v p}=T(-1 / 2,-1 / 2) * S(n x / 2, n y / 2) * T(1,1)
$$

This is similar
to windowing
transform.
(Chap -6)

y_{pixel}

1\end{array}\right]=\left[$$
\begin{array}{ccc}\frac{n_{x}}{2} & 0 & \frac{n_{x}-1}{2} \\
0 & \frac{n_{y}}{2} & \frac{n_{y}-1}{2} \\
0 & 0 & 1\end{array}
$$\right]\left[$$
\begin{array}{c}x_{\text {canonical }} \\
y_{\text {canonical }} \\
1\end{array}
$$\right]\)

Viewport Transformation (18/19)

Viewport Transformation (19/19)

Orthographic Projection Transformation (1/1)

- What if we want to render geometry in some region other than canonical view vol.?

Orthographic View Volume (1/3)

- We'll name the coordinates of its sides so that the view volume is $[I, r] \times$ [b, $t] \times[f, n]$
- View direction: looking along -z
- Orientation: +y up
- $x=I \equiv$ left plane,
- $x=r \equiv$ right plane,
- $y=b$ 三 bottom plane,
- $y=t \equiv$ top plane,
- z = n 三near plane,

- $z=f \equiv$ far plane.

Orthographic View Volume (2/3)

- Looking along the minus z-axis with his head pointing in the positive y-direction.
- View direction: looking along -z
- Orientation: +y up
- But, this is unintuitive!

Orthographic View Volume (3/3)

- If entire orthographic view volume has negative \boldsymbol{z} then $n>f$.
- $z=n$ plane is closer

Orthographic to Canonical View Volume (1/3)

- Transform from orthographic view volume to the canonical view volume
- We need to apply windowing transformation (just like before!)

Canonical
view volume

orthographic view volume

Orthographic to Canonical View Volume (2/3)

$$
\mathbf{M}_{\text {orth }}=\left[\begin{array}{cccc}
\frac{2}{r-l} & 0 & 0 & -\frac{r+l}{r-l} \\
0 & \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\
0 & 0 & \frac{2}{n-f} & -\frac{n+f}{n-f} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Orthographic to Canonical View Volume (3/3)

$$
\mathbf{M}_{\text {orth }}=\left[\begin{array}{cccc}
\frac{2}{r-l} & 0 & 0 & -\frac{r+l}{r-l} \\
0 & \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\
0 & 0 & \frac{2}{n-f} & -\frac{n+f}{n-f} \\
0 & 0 & 0 & 1
\end{array}\right] \begin{aligned}
& \text { Q: How can we get this } \\
& \text { matrix? } \\
& \text { Help: Chap 6 (Windowing } \\
& \text { Transformation) and } M_{v p}
\end{aligned}
$$

Orthographic \rightarrow Canonical \rightarrow Screen (1/5)

Orthographic \rightarrow Canonical \rightarrow Screen (2/5)

Orthographic \rightarrow Canonical \rightarrow Screen (3/5)

Orthographic \rightarrow Canonical \rightarrow Screen (4/5)

Orthographic \rightarrow Canonical \rightarrow Screen (5/5)

$\left[\begin{array}{c}x_{\text {pixel }} \\ y_{\text {pixel }} \\ z_{\text {canonical }} \\ 1\end{array}\right]=\left(\mathbf{M}_{\mathrm{vp}} \mathbf{M}_{\text {orth }}\right)\left[\begin{array}{c}x \\ y \\ z \\ 1\end{array}\right]$

Code: Orthographic to Screen (1/1)

Drawing many 3D lines with endpoints a_{i} and b_{i} :

```
Construct M
Construct M Morth
M = M Mvp
for each line segment (a ( , b ic) do:
    p = M* ai
    q = M* *bi
    drawline ( }\mp@subsup{x}{p}{},\mp@subsup{y}{p}{},\mp@subsup{x}{q}{}, \mp@subsup{y}{q}{}
```


Practice Problem - 1

Transform a 3D line AB from an orthographic view volume to a viewport of size 128×96. Vertices of the line are $A(-1,-3,-5)$ and $B(2,4,-6)$. The orthographic view volume has the following setup:

$$
I=-4, r=4, b=-4, t=4, n=-4, f=-8
$$

You must -
a. Determine the transformation matrix M.
b. Multiply M with the vertices of the line and determine the position of vertices on viewport.

Practice Problem - 1 (Sol.)

$$
\left.\begin{array}{c}
M_{\mathrm{vp}}=\left[\begin{array}{cccc}
\frac{n_{x}}{2} & 0 & 0 & \frac{n_{x}-1}{2} \\
0 & \frac{n_{y}}{2} & 0 & \frac{n_{y}-1}{2} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{array} \begin{array}{l}
\mathrm{nx}=128 \\
\mathrm{ny}=96 \\
\mathbf{M}_{\mathrm{orth}}
\end{array}\right]\left[\begin{array}{cccc}
\frac{2}{r-l} & 0 & 0 & -\frac{r+l}{r-l} \\
0 & \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\
0 & 0 & \frac{2}{n-f} & -\frac{n+f}{n-f} \\
0 & 0 & 0 & 1
\end{array}\right] \quad \begin{aligned}
& 1=-4, \mathrm{r}=4, \\
& \mathrm{~b}=-4, \mathrm{t}=4, \\
& \mathrm{n}=-4, \mathrm{f}=-8
\end{aligned},
$$

Practice Problem - 1 (Sol.)

$$
\begin{aligned}
& \mathbf{M}=\mathrm{M}_{\mathrm{vp}}{ }^{*} \mathrm{M}_{\text {orth }} \\
& \mathbf{M}=\left[\begin{array}{cccc}
\frac{2}{r-l} & 0 & 0 & -\frac{r+l}{r-l} \\
0 & \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\
0 & 0 & \frac{2}{n-f} & -\frac{n+f}{n-f} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
\frac{n_{x}}{2} & 0 & 0 & \frac{n_{x}-1}{2} \\
0 & \frac{n_{y}}{2} & 0 & \frac{n_{y}-1}{2} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& \mathrm{A}^{\prime}=\mathrm{M} \mathrm{~A} \\
& \mathrm{~B}^{\prime}=\mathrm{M} \mathrm{~B}
\end{aligned}
$$

Additional Reading

- Wireframe renderings
- Derive $\mathrm{M}_{\text {orth }}$

